

VISTA EXTENSIBLE MARKUP
LANGUAGE (XML) PARSER

Technical and User Documentation

Patch XT*7.3*58

Version 1.1

February 2002

Department of Veterans Affairs
VHA OI System Design & Development (SD&D)

Information Infrastructure Service (IIS)

Document Revision History

The following table displays the revision history for this document. Revisions to the documentation are
based on Patch XT*7.3*58. This patch released the VISTA XML Parser to the field.

Date Revision Description Author
02/07/02 Patch

XT*7.3*58
Reviewed and edited documentation for
VISTA standards and format. Added new
chapter named “XML Parser Use Example.”

Wally, Fort, Susan Strack,
Office of Information,
Oakland, CA

05/18/00

Version 1.1 Initial documentation written for this product
by Science Applications International
Corporation (SAIC).

Science Applications
International Corporation of
San Diego, CA

February 2002 VISTA Extensible Markup Language (XML) Parser iii
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Document Revision History

iv VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Contents

Document Revision History .. iii
Figures..vii
Introduction .. 1

Term Definitions and XML Parser Concept .. 1
Orientation.. 3
Known Issues ... 5
Event-Driven Application Programmer Interface .. 7

EN^MXMLPRSE(DOC,CBK,OPT).. 7
In-Memory Document Application Programmer Interface .. 11

$$EN^MXMLDOM... 12
DELETE^MXMLDOM... 13
$$NAME^MXMLDOM .. 13
$$CHILD^MXMLDOM.. 14
$$SIBLING^MXMLDOM .. 14
$$PARENT^MXMLDOM .. 15
TEXT^MXMLDOM or $$TEXT^MXMLDOM... 15
CMNT^MXMLDOM or $$CMNT^MXMLDOM.. 16
$$ATTRIB^MXMLDOM ... 16
$$VALUE^MXMLDOM .. 17

Entity Catalog .. 19
XML ENTITY CATALOG (#950).. 19

VISTA XML Parser Usage Example.. 21
Create an XML File ... 21
Invoke Simple API for XML (SAX) Interface .. 21
Check Document Object Model (DOM) Interface... 22
List All Sibling Nodes ... 22

Index... 23

February 2002 VISTA Extensible Markup Language (XML) Parser v
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Table of Contents

vi VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Figures

Figure 1: EN^MXMLPRSE(DOC,CBK,OPT) – Event-Driven API based on SAX interface 8
Figure 2: Event types recognized by the VISTA XML Parser... 10
Figure 3: XML document (left) – Tree structure diagram (right) ... 11
Figure 4: $$EN^MXMLDOM – Perform initial processing of XML document.. 12
Figure 5: DELETE^MXMLDOM – Delete specified document instance.. 13
Figure 6: $$NAME^MXMLDOM – Return element name at specified node in document parse tree 13
Figure 7: $$CHILD^MXMLDOM – Return parent node’s first or next child. 0 if none remaining.......... 14
Figure 8: $$SIBLING^MXMLDOM – Return specified node’s immediate sibling. 0 if none remaining. 14
Figure 9: $$PARENT^MXMLDOM – Return specified node’s parent node. 0 if none remaining 15
Figure 10: TEXT^MXMLDOM or $$TEXT^MXMLDOM – Extract specified node’s non-markup text 15
Figure 11: CMNT^MXMLDOM or $$CMNT^MXMLDOM – Extract specified node’s comment text .. 16
Figure 12: $$ATTRIB^MXMLDOM – Retrieve specified node’s first or next attribute........................... 16
Figure 13: $$VALUE^MXMLDOM – Retrieve value associated with named attribute 17
Figure 14: XML ENTITY CATALOG file (#950) – Stores external entities and assoc public identifiers 19
Figure 15: VISTA XML Parser Use Example – Create XML File .. 21
Figure 16: VISTA XML Parser Use Example – Invoke SAX Interface .. 21
Figure 17: VISTA XML Parser Use Example – Check DOM Interface .. 22
Figure 18: VISTA XML Parser Use Example – List Sibling Nodes.. 22

February 2002 VISTA Extensible Markup Language (XML) Parser vii
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Table of Figures

viii VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Introduction

The VISTA Extensible Markup Language (XML) Parser is a full-featured, validating XML parser written
in the M programming language and designed to interface with the VISTA suite of M-based applications.
It is not a standalone product. Rather, it acts as a server application that can provide XML parsing
capabilities to any client application that subscribes to the application programmer interface (API)
specification detailed in this document.

The VISTA XML Parser employs two very different API implementations. The first is an event-driven
interface that is modeled after the widely used Simple API for XML (SAX) interface specification. In
this implementation, a client application provides a special handler for each parsing event of interest.
When the client invokes the parser, it conveys not only the document to be parsed, but also the entry
points for each of its event handlers. As the parser progresses through the document, it invokes the
client’s handlers for each parsing event for which a handler has been registered.

The second API implementation is based on the World Wide Web Consortium (W3C’s) Document Object
Model (DOM) specification. This API, which is actually built on top of the event-driven interface, first
constructs an in-memory model of the fully parsed document. It then provides methods to navigate
through and extract information from the parsed document.

The choice of which API to employ is in part dependent on the needs of the application developer. The
event-driven interface requires the client application to process the document in a strictly top-down
manner. In contrast, the in-memory model provides the ability to move freely throughout the document
and has the added advantage of ensuring that the document is well formed and valid before any
information is returned to the client application.

The VISTA XML Parser employs an Entity Catalog to allow storage of external entities such as document
type definitions. The Entity Catalog is a VA FileMan-compatible database and can be manipulated using
the usual VA FileMan tools.

Term Definitions and XML Parser Concept

To understand the terms used in this documentation and the concept of the operation of an XML Parser,
please review the W3C Architecture Domain website, Extensible Markup Language (XML) page at:
http://www.w3.org/XML/ .

February 2002 VISTA Extensible Markup Language (XML) Parser 1
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

http://www.w3.org/XML/

Introduction

2 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Orientation

This documentation uses several methods to highlight different aspects of the material. “Snapshots” of
computer dialogue (or other online displays) are shown in a non-proportional font and enclosed within a
box. User responses to on-line prompts are highlighted in boldface. Boldface is also used to highlight a
descriptive word or sentence. The Return or Enter key is illustrated by the symbol <Enter> when
displayed in computer dialogue and is included in examples only when it may be unclear to the reader
that such a keystroke must be entered. The following example indicates that you should type two question
marks followed by pressing the Return or Enter key when prompted to select an option:

Select Primary Menu option: ??
Figure 99: How to access online help

M code, variable names, acronyms, the formal name of options, actual field names, and file names are
represented with all uppercase letters.

February 2002 VISTA Extensible Markup Language (XML) Parser 3
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Orientation

4 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Known Issues

The following are known issues in this version of the XML parser. Some of these are due to certain
limitations of the M programming language.

Unlike languages like Java that have multiple character encoding support built-in, M does not recognize
character encodings that do not incorporate the printable ASCII character subset. Thus, 16-bit character
encodings such as Unicode are not supported. Fortunately, a large number of 8-bit character encodings
do incorporate the printable ASCII character subset and can be parsed. Because of this limitation, the
VISTA XML Parser will reject any documents with unsupported character encodings.

The current version of the VISTA XML Parser does not support retrieval of external entities using the
HTTP or FTP protocols (or for that matter, any protocols other than the standard file access protocols of
the underlying operating system). Client applications using the event-driven interface can intercept
external entity retrieval by the parser and implement support for these protocols if desired.

The parser uses the Kernel function FTG^%ZISH for file access. This function reads the entire contents
of a file into an M global. There are several nuances to this function that manifest themselves in parser
operation:

1. Files are opened with a time-out parameter. If an attempt is made to access a non-existent file,
there is a delay of a few seconds before the error is signaled.

2. Files are accessed in text mode. The result is that certain imbedded control characters are

stripped from the input stream and never detected by the parser. Because these control characters
are disallowed by XML, the parser will not report such documents as non-conforming.

3. A line feed / carriage return sequence at the end of a document is stripped and not presented to

the parser. Only in rare circumstances would this be considered significant data, but in the
strictest sense should be preserved.

The parser allows external entities to contain substitution text that in some cases would violate XML rules
that state that a document must be conforming in the absence of resolving such references. In other
words, XML states that a non-validating parser should be able to verify that a document is conforming
without processing external entities. This restriction constrains how token streams can be continued
across entities. The parser recognizes most, but not all, of these restrictions. The effect is that the parser
is more lax in allowing certain kinds of entity substitutions.

Parsers vary in how they enforce whitespace that is designated as required by the XML specification.
This parser will flag the absence of any required whitespace as a conformance error, even in situations
where the absence of such whitespace would not introduce syntactic ambiguity. The result is that this
parser will reject some documents that may be accepted by other parsers.

February 2002 VISTA Extensible Markup Language (XML) Parser 5
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Known Issues

6 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Event-Driven Application Programmer Interface

The event-driven Application Programmer Interface (API) is based on the well-established Simple API
for XML (SAX) interface employed by many XML parsers. This API, Figure 1, has a single method.
(Figure 1 spans two pages.)

EN^MXMLPRSE(DOC,CBK,OPT)

February 2002 VISTA Extensible Markup Language (XML) Parser 7
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Paramete
r

Type Require
d

Description

DOC String Yes This is either a closed reference to a global root containing
the document or a filename and path reference identifying
the document on the host system. If a global root is
passed, the document must either be stored in standard
FileMan word-processing format or may occur in
sequentially numbered nodes below the root node. Thus,
if the global reference is “^XYZ”, the global must be of
one of the following formats:

^XYZ(1,0) = “LINE 1”
^XYZ(2,0) = “LINE 2” ...

or

^XYZ(1) = “LINE 1”
^XYZ(2) = “LINE 2” ...

CBK Local array
(by reference)

No This is a local array, passed by reference that contains a
list of parse events and the entry points for the handlers of
those events. The format for each entry is:

CBK(<event type>) = <entry point>

The entry point must reference a valid entry point in an
existing M routine and should be of the format
tag^routine. The entry should not contain any formal
parameter references. The application developer is
responsible for ensuring that the actual entry point
contains the appropriate number of formal parameters for
the event type. For example, client application might
register its STARTELEMENT event handler as follows:

CBK(“STARTELEMENT”) = “STELE^CLNT”

The actual entry point in the CLNT routine must include
two formal parameters as in the example:

STELE(ELE,ATR) <handler code>

For the types of supported events and their required
parameters, see the discussion on the pages that follows.

Event-Driven Application Programmer Interface

Paramete
r

Type Require
d

Description

OPT String No This is a list of option flags that control parser behavior.
Recognized option flags are:

• W = Do not report warnings to the client.
• V = Do not validate the document. If specified, the

parser only checks for conformance.
• 0 = Terminate parsing on encountering a warning.
• 1 = Terminate parsing on encountering a validation

error. (By default, the parser terminates only when
a conformance error is encountered.)

Figure 1: EN^MXMLPRSE(DOC,CBK,OPT) – Event-Driven API based on SAX interface

8 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

 Event-Driven Application Programmer Interface

The VISTA XML Parser recognizes the event types Figure 2. (Figure 2 spans two pages.)

February 2002 VISTA Extensible Markup Language (XML) Parser 9
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Event Type Parameter(s) Description
STARTDOCUMENT

None Notifies the client that document parsing has
commenced.

ENDDOCUMENT

None

Notifies the client that document parsing has
completed.

DOCTYPE

ROOT
PUBID
SYSID

Notifies the client that a DOCTYPE declaration has
been encountered. The name of the document root is
given by ROOT. The public and system identifiers of
the external document type definition are given by
PUBID and SYSID, respectively.

STARTELEMENT

NAME
ATTRLIST

An element (tag) has been encountered. The name of
the element is given in NAME. The list of attributes
and their values is provided in the local array
ATTRLST in the format:

ATTRLST(<name>) = <value>

ENDELEMENT

NAME A closing element (tag) has been encountered. The
name of the element is given in NAME.

CHARACTERS

TEXT Non-markup content has been encountered. TEXT
contains the text. Line breaks within the original
document are represented as carriage return/line feed
character sequences. The parser does not necessarily
pass an entire line of the original document to the
client with each event of this type.

PI

TARGET
TEXT

The parser has encountered a processing instruction.
TARGET is the target application for the processing
instruction. TEXT is a local array containing the
parameters for the instruction.

EXTERNAL

SYSID
PUBID
GLOBAL

The parser has encountered an external entity reference
whose system and public identifiers are given by
SYSID and PUBID, respectively. If the event handler
elects to retrieve the entity rather than allowing the
parser to do so, it should pass the global root of the
retrieved entity in the GLOBAL parameter. If the event
handler wishes to suppress retrieval of the entity
altogether, it should set both SYSID and PUBID to
null.

Event-Driven Application Programmer Interface

Event Type Parameter(s) Description
NOTATION

NAME
SYSID
PUBIC

The parser has encountered a notation declaration. The
notation name is given by NAME. The system and
public identifiers associated with the notation are given
by SYSID and PUBIC, respectively.

COMMENT

TEXT The parser has encountered a comment. TEXT is the
text of the comment.

ERROR

ERR The parser has encountered an error during the
processing of a document. ERR is a local array
containing information about the error. The format is:

• ERR(“SEV”) = Severity of the error where 0 is
a warning, 1 is a validation error, and 2 is a
conformance error.

• ERR(“MSG”) = Brief text description of the
error.

• ERR(“ARG”) = The token value the triggered
the error (optional).

• ERR(“LIN”) = The number of the line being
processed when the error occurred.

• ERR(“POS”) = The character position within
the line where the error occurred.

• ERR(“XML”) = The original document text of
the line where the error occurred.

Figure 2: Event types recognized by the VISTA XML Parser

A sample client of the event-driven API is provided in the routine MXMLTEST. This routine has an
entry point EN(DOC,OPT), where DOC and OPT are the same parameters as described above in Figure 1
for the parser entry point. This sample application simply prints a summary of the parsing events as they
occur.

10 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

In-Memory Document Application Programmer Interface

This Application Programmer Interface (API) is based on the W3C’s Document Object Model (DOM)
specification. It first builds an “in-memory” image of the fully parsed and validated document and then
provides a set of methods to permit structured traversal of the document and extraction of its contents.
This API is actually layered on top of the event-driven API. In other words, it is actually a client of the
event-driven API that in turn acts as a server to another client application.

The document image is represented internally as a tree with each node in the tree representing an element
instance. Attributes (names and values), non-markup text, and comment text may be associated with any
given node. For example, in Figure 3 the XML document on the left is represented by the tree structure
on the right.

Top
al1
al2

attr1 = v
attr2 = v

Child1

child1 text

Child2

child2 text

Figure 3: XML document (left) – Tree structure diagram (right)

The supported methods are documented on the pages that follow.

February 2002 VISTA Extensible Markup Language (XML) Parser 11
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

<top attr1=”val1” attr2=”val2”>
<child1>child1 text</child1>
<child2>child2 text></child2>
</top>

In-Memory Document Application Programmer Interface

$$EN^MXMLDOM

This is the entry point to perform initial processing of the XML document. The client application must
first call this entry point to build the in-memory image of the document before the remaining methods can
be applied. The return value is a handle to the document instance that was created and is used by the
remaining API calls to identify a specific document instance. The parameters for this entry point are
listed in Figure 4 by type, requirement (yes or no), and description.

Paramete
r

Type Require
d

Description

DOC

String Yes Either a closed reference to a global root containing the
document or a filename and path reference identifying the
document on the host system. If a global root is passed,
the document must either be stored in standard FileMan
word-processing format or may occur in sequentially
numbered nodes below the root node. Thus, if the global
reference is “^XYZ”, the global must be of one of the
following formats:

^XYZ(1,0) = “LINE 1”
^XYZ(2,0) = “LINE 2” ...

or

^XYZ(1) = “LINE 1”
^XYZ(2) = “LINE 2” ...

OPT

String No • W = Do not report warnings to the client.
• V = Do not validate the document. If specified, the

parser only checks for conformance.
• 0 = Terminate parsing on encountering a warning.
• 1 = Terminate parsing on encountering a validation

error. (By default, the parser terminates only when
a conformance error is encountered.)

Return
value

Integer - Returns a nonzero handle to the document instance if
parsing completed successfully, or zero otherwise. This
handle is passed to all other API methods to indicate
which document instance is being referenced. This allows
for multiple document instances to be processed
concurrently.

Figure 4: $$EN^MXMLDOM – Perform initial processing of XML document

12 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

 In-Memory Document Application Programmer Interface

DELETE^MXMLDOM

This entry point deletes the specified document instance. A client application should always call this entry
point when finished with a document instance. The parameter for this API is listed in Figure 5 by type,
requirement (yes or no), and description.

Paramete

r
Type Require

d
Description

HANDLE

Integer Yes The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

Figure 5: DELETE^MXMLDOM – Delete specified document instance

$$NAME^MXMLDOM

This entry point returns the name of the element at the specified node within the document parse tree. The
parameters for this API are listed in Figure 6 by type, requirement (yes or no), and description.

Paramete

r
Type Require

d
Description

HANDLE

Integer Yes The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

NODE

Integer Yes The node whose associated element name is being
retrieved.

Return
Value

String - The name of the element associated with the specified
node.

Figure 6: $$NAME^MXMLDOM – Return element name at specified node in document parse tree

February 2002 VISTA Extensible Markup Language (XML) Parser 13
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

In-Memory Document Application Programmer Interface

$$CHILD^MXMLDOM

Returns the node of the first or next child of a given parent node, or 0 if there are none remaining. The
parameters for this API are listed in Figure 7 by type, requirement (yes or no), and description.

Paramete

r
Type Require

d
Description

HANDLE

Integer Yes The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

PARENT

Integer Yes The node whose children are being retrieved.

CHILD

Integer No If specified, this is the last child node retrieved. The
function will return the next child in the list. If the
parameter is zero or missing, the first child is returned.

Return
Value

Integer - The next child node or zero if there are none remaining.

Figure 7: $$CHILD^MXMLDOM – Return parent node’s first or next child. 0 if none remaining

$$SIBLING^MXMLDOM

Returns the node of the specified node’s immediate sibling, or 0 if there is none. The parameters for this
API are listed in Figure 8 by type, requirement (yes or no), and description.

Paramete

r
Type Require

d
Description

HANDLE

Integer Yes The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

NODE

Integer Yes The node in the document tree whose sibling is being
retrieved.

Return
Value

Integer - The node corresponding to the immediate sibling of the
specified node, or zero if there is none.

Figure 8: $$SIBLING^MXMLDOM – Return specified node’s immediate sibling. 0 if none remaining

14 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

 In-Memory Document Application Programmer Interface

$$PARENT^MXMLDOM

Returns the parent node of the specified node, or 0 if there is none. The parameters for this API are listed
in Figure 9 by type, requirement (yes or no), and description.

Paramete

r
Type Require

d
Description

HANDLE

Integer Yes The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

NODE

Integer Yes The node in the document tree whose parent is being
retrieved.

Return
Value

String - The parent node of the specified node, or zero if there is
no parent.

Figure 9: $$PARENT^MXMLDOM – Return specified node’s parent node. 0 if none remaining

TEXT^MXMLDOM or $$TEXT^MXMLDOM

Extracts non-markup text associated with the specified node. The parameters for this API are listed in
Figure 10 by type, requirement (yes or no), and description.

Paramete

r
Type Require

d
Description

HANDLE

Integer Yes The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

NODE

Integer Yes The node in the document tree that is being referenced by
this call.

TEXT

String Yes This parameter must contain a closed local or global array
reference that is to receive the text. The specified array is
deleted before being populated.

Return
Value

Boolean - If called as an extrinsic function, the return value is true if
text was retrieved, or false if not.

Figure 10: TEXT^MXMLDOM or $$TEXT^MXMLDOM – Extract specified node’s non-markup text

February 2002 VISTA Extensible Markup Language (XML) Parser 15
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

In-Memory Document Application Programmer Interface

CMNT^MXMLDOM or $$CMNT^MXMLDOM

Extracts comment text associated with the specified node. The parameters for this API are listed in Figure
11 by type, requirement (yes or no), and description.

Paramete
r

Type Require
d

Description

HANDLE

Integer Yes The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

NODE

Integer Yes The node in the document tree that is being referenced by
this call.

TEXT

String Yes This parameter must contain a closed local or global array
reference that is to receive the text. The specified array is
deleted before being populated.

Return
Value

Boolean - If called as an extrinsic function, the return value is true if
text was retrieved, or false if not.

Figure 11: CMNT^MXMLDOM or $$CMNT^MXMLDOM – Extract specified node’s comment text

$$ATTRIB^MXMLDOM

Retrieves the first or next attribute associated with the specified node. The parameters for this API are
listed in Figure 12 by type, requirement (yes or no), and description.

Paramete
r

Type Require
d

Description

HANDLE

Integer Yes The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

NODE

Integer Yes The node whose attribute name is being retrieved.

ATTRIB

String No The name of the last attribute retrieved by this call. If null
or missing, the first attribute associated with the specified
node is returned. Otherwise, the next attribute in the list is
returned.

Return
Value

String - The name of the first or next attribute associated with the
specified node, or null if there are none remaining.

16 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Figure 12: $$ATTRIB^MXMLDOM – Retrieve specified node’s first or next attribute

 In-Memory Document Application Programmer Interface

$$VALUE^MXMLDOM

Retrieves the value associated with the named attribute. The parameters for this API are listed in Figure
13 by type, requirement (yes or no), and description.

Paramete

r
Type Require

d
Description

HANDLE

Integer Yes The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

NODE

Integer Yes The node whose attribute value is being retrieved.

ATTRIB

String No The name of the attribute whose value is being retrieved
by this call.

Return
Value

String - The value associated with the specified attribute.

Figure 13: $$VALUE^MXMLDOM – Retrieve value associated with named attribute

February 2002 VISTA Extensible Markup Language (XML) Parser 17
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

In-Memory Document Application Programmer Interface

18 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Entity Catalog

The entity catalog is used to store external entities and their associated public identifiers. When the XML
parser encounters an external entity reference with a public identifier, it first looks for that public
identifier in the entity catalog. If it finds the entity, it retrieves its value. Otherwise, it attempts to
retrieve the entity value using the system identifier. The problem with using system identifiers is that
they often identify resources that may have been relocated since the document was authored. (This is
analogous to the problem with broken links in HTML documents.) Using public identifiers and an entity
catalog allows one to build a collection of commonly used and readily accessible external entities (e.g.,
external document type definitions).

XML ENTITY CATALOG (#950)

The entity catalog is a VA FileMan-compatible file that is very simple in structure:

Field # Field Name Datatype Description
.01

ID Free text
(1-250)

The public identifier associated with this entity.

1

VALUE Word
Processing

The text associated with the entity.

Figure 14: XML ENTITY CATALOG file (#950) – Stores external entities and assoc public identifiers

February 2002 VISTA Extensible Markup Language (XML) Parser 19
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Entity Catalog

20 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

VISTA XML Parser Usage Example

This is a simple example of how to use the VISTA XML Parser with an XML document (file). The XML
file contains a parent node named BOOKS. Nested within that parent node are child nodes named TITLE
and AUTHOR.

Remember that the:

• Parent node is the node whose child nodes are being retrieved.
• Child node, if specified, is the last child node retrieved. The function will return the next child in

the list. If the parameter is zero or missing, the first child is returned.

Create an XML File

^TMP($J,1) = <?xml version='1.0'?>
^TMP($J,2) = <!DOCTYPE BOOK>
^TMP($J,3) = <BOOK>
^TMP($J,4) = <TITLE>Design Patterns</TITLE>
^TMP($J,5) = <AUTHOR>Gamma</AUTHOR>
^TMP($J,6) = <AUTHOR>Helm</AUTHOR>
^TMP($J,7) = <AUTHOR>Johnson</AUTHOR>
^TMP($J,8) = <AUTHOR>Vlissides</AUTHOR>
^TMP($J,9) = </BOOK>

Figure 15: VISTA XML Parser Use Example – Create XML File

Invoke Simple API for XML (SAX) Interface

D EN^MXMLTEST($NA(^TMP($J)),"V") <Enter>

Figure 16: VISTA XML Parser Use Example – Invoke SAX Interface

. . . Now see what happens.

February 2002 VISTA Extensible Markup Language (XML) Parser 21
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

VISTA XML Parser Usage Example

Check Document Object Model (DOM) Interface

>S HDL=$$EN^MXMLDOM($NA(^TMP($J))) <Enter>

>W $$NAME^MXMLDOM(HDL,1) <Enter>
BOOK

>S CHD=$$CHILD^MXMLDOM(HDL,1) <Enter>

>W $$NAME^MXMLDOM(HDL,CHD) <Enter>
TITLE

>W $$TEXT^MXMLDOM(HDL,CHD,$NA(VV)) <Enter>
1

>ZW VV <Enter>
VV(1)=Design Patterns

Figure 17: VISTA XML Parser Use Example – Check DOM Interface

List All Sibling Nodes

>S CHD=$$CHILD^MXMLDOM(HDL,1) <Enter>

>S SIB=CHD <Enter>

>F S SIB=$$SIBLING^MXMLDOM(HDL,SIB) Q:SIB'>0 W
!,SIB,?4,$$NAME^MXMLDOM(HDL,SIB) <Enter>
3 AUTHOR
4 AUTHOR
5 AUTHOR
6 AUTHOR
>

Figure 18: VISTA XML Parser Use Example – List Sibling Nodes

22 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Write the name of
the first node.

Get the child of
the node.

Get the text of the
child.

Write the child name.

Index

A

APIs
$$ATTRIB^MXMLDOM, 16
$$CHILD^MXMLDOM, 14
$$CMNT^MXMLDOM, 16
$$EN^MXMLDOM, 12
$$NAME^MXMLDOM, 13
$$PARENT^MXMLDOM, 15
$$SIBLING^MXMLDOM, 14
$$TEXT^MXMLDOM, 15
$$VALUE^MXMLDOM, 17
CMNT^MXMLDOM, 16
DELETE^MXMLDOM, 13
Document Object Model (DOM), 1, 11
EN^MXMLPRSE(DOC,CBK,OPT), 7
Event-Driven, 7–10
In-Memory, 11–16
TEXT^MXMLDOM, 15

$$ATTRIB^MXMLDOM
Parameters

ATTRIB, 16
HANDLE, 16
NODE, 16

Return Value, 16

C
child node, 14, 21
$$CHILD^MXMLDOM

Parameters
CHILD, 14
HANDLE, 14
PARENT, 14
Return Value, 14

$$CMNT^MXMLDOM
Parameters

HANDLE, 16
NODE, 16
Return Value, 16
TEXT, 16

CMNT^MXMLDOM
Parameters

HANDLE, 16
NODE, 16
Return Value, 16
TEXT, 16

conformance error, 5, 8, 10, 12
conforming XML, 5

D
DELETE^MXMLDOM

Parameters
HANDLE, 13

Document Object Model (DOM), 1, 11, 22
document type definition, 5, 9, 19
Documentation Revision History, iii

E
$$EN^MXMLDOM

Parameters
DOC, 12
OPT, 12
Return value, 12

EN^MXMLPRSE(DOC,CBK,OPT)
Parameters

CBK, 7
DOC, 7
OPT, 8

Entity Catalog
VA FileMan-compatible database, 1
XML ENTITY CATALOG file (#950), 19

errors
conformance, 8, 10, 12
validation, 8, 10, 12

Event Types recognized by VISTA XML Parser
CHARACTERS, 9
COMMENT, 10
DOCTYPE, 9
ENDDOCUMENT, 9
ENDELEMENT, 9
ERROR, 10
EXTERNAL, 9
NOTATION, 10
PI, 9
STARTDOCUMENT, 9
STARTELEMENT, 9

Event-Driven Application Programmer
Interface, 7–10

external document type definition, 5, 9, 19
external entities, 5, 9, 19

February 2002 VISTA Extensible Markup Language (XML) Parser 23
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

F

Index

File
XML ENTITY CATALOG (#950), 19

file access
Kernel function FTG^%ZISH, 5

FileMan, 1
FTP protocol, 5
function

Kernel function FTG^%ZISH, 5

H
HTTP protocol, 5

I
In-Memory APIs

$$ATTRIB^MXMLDOM, 16
$$CHILD^MXMLDOM, 14
$$CMNT^MXMLDOM, 16
$$EN^MXMLDOM, 12
$$NAME^MXMLDOM, 13
$$PARENT^MXMLDOM, 15
$$SIBLING^MXMLDOM, 14
$$TEXT^MXMLDOM, 15
$$VALUE^MXMLDOM, 17
CMNT^MXMLDOM, 16
DELETE^MXMLDOM, 13
TEXT^MXMLDOM, 15

In-Memory Document Application Programmer
Interface, 11–16

K
Kernel function FTG^%ZISH

read file into M global, 5
Known issues

ASCII character subset, 5
enforcing whitespace, 5
entity substitutions, 5
FTP protocol, 5
HTTP protocol, 5
Kernel function FTG^%ZISH and parser

operation, 5
limitations of M (MUMPS), 5
unsupported character encodings, 5

N
$$NAME^MXMLDOM

Parameters
HANDLE, 13
NODE, 13

Return Value, 13
non-conforming XML, 5

O
Orientation, 3

P
parent node, 14, 15, 21
$$PARENT^MXMLDOM

Parameters
HANDLE, 15
NODE, 15
Return Value, 15

Patch XT*7.3*58, iii
public identifier, 9, 10, 19

R
Revision History

Documentation, iii

S
SAX Interface, 1, 21
sibling node, 14, 22
$$SIBLING ^MXMLDOM

Parameters
HANDLE, 14
NODE, 14
Return Value, 14

Simple API for XML (SAX), 1, 21
system identifier, 9, 10, 19

T
TEXT^MXMLDOM

Parameters
HANDLE, 15
NODE, 15
Return Value, 15
TEXT, 15

$$TEXT^MXMLDOM
Parameters

HANDLE, 15
NODE, 15
Return Value, 15
TEXT, 15

24 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

V

 Index

VA FileMan, 1
valid XML, 1
validated document, 11
validation error, 8, 10, 12
$$VALUE^MXMLDOM

Parameters
ATTRIB, 17
HANDLE, 17
NODE, 17
Return Value, 17

VISTA XML Parser
Introduction, 1
usage example, 21–22

W
well formed XML, 1
World Wide Web Consortium (W3C’s), 1

Document Object Model (DOM), 1, 11, 12,
13, 14, 15, 16, 17

X
XML document, 21
XML ENTITY CATALOG (#950), 19

Fields
.01, 19
1, 19

XML Parser, VISTA
Introduction, 1

XT*7.3*58, iii

February 2002 VISTA Extensible Markup Language (XML) Parser 25
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

Index

26 VISTA Extensible Markup Language (XML) Parser February 2002
 Technical and User Documentation
 Patch XT*7.3*58, Version 1.1

	Revision History
	Figures
	Introduction
	Definitions and Concepts

	Orientation
	Known Issues
	Event-Driven API
	EN^MXMLPRSE(DOC,CBK,OPT)

	In-Memory Document API
	$$EN^MXMLDOM
	DELETE^MXMLDOM
	$$NAME^MXMLDOM
	$$CHILD^MXMLDOM
	$$SIBLING^MXMLDOM
	$$PARENT^MXMLDOM
	TEXT^MXMLDOM or $$TEXT^MXMLDOM
	CMNT^MXMLDOM or $$CMNT^MXMLDOM
	$$ATTRIB^MXMLDOM
	$$VALUE^MXMLDOM

	Entity Catalog
	XML ENTITY CATALOG (#950)

	Usage Example
	Create an XML File
	Invoke Simple API for XML (SAX) Interface
	Check Document Object Model (DOM) Interface
	List All Sibling Nodes

	Index

